Conversion of milled pine wood by manganese peroxidase from Phlebia radiata.
نویسندگان
چکیده
Purified manganese peroxidase (MnP) from the white-rot basidiomycete Phlebia radiata was found to convert in vitro milled pine wood (MPW) suspended in an aqueous reaction solution containing Tween 20, Mn(2+), Mn-chelating organic acid (malonate), and a hydrogen peroxide-generating system (glucose-glucose oxidase). The enzymatic attack resulted in the polymerization of lower-molecular-mass, soluble wood components and in the partial depolymerization of the insoluble bulk of pine wood, as demonstrated by high-performance size exclusion chromatography (HPSEC). The surfactant Tween 80 containing unsaturated fatty acid residues promoted the disintegration of bulk MPW. HPSEC showed that the depolymerization yielded preferentially lignocellulose fragments with a predominant molecular mass of ca. 0.5 kDa. MnP from P. radiata (MnP3) turned out to be a stable enzyme remaining active for 2 days even at 37 degrees C with vigorous stirring, and 65 and 35% of the activity applied was retained in Tween 20 and Tween 80 reaction mixtures, respectively. In the course of reactions, major part of the Mn-chelator malonate was decomposed (85 to 87%), resulting in an increase of pH from 4.4 to >6.5. An aromatic nonphenolic lignin structure (beta-O-4 dimer), which is normally not attacked by MnP, was oxidizible in the presence of pine wood meal. This finding indicates that certain wood components may promote the degradative activities of MnP in a way similar to that promoted by Tween 80, unsaturated fatty acids, or thiols.
منابع مشابه
An engineered Phlebia radiata manganese peroxidase: expression, refolding, purification and preliminary characterization
Manganese peroxidases (MnPs) are interesting enzymes in protein engineering, aimed at maximizing industrial bioprocesses such as lignin degradation and biofuel production. cDNA of the secreted shorttype of MnP from Phlebia radiata (Pr-MnP3) has been successfully engineered and amplified by polymerase chain reaction (PCR). Five mutant genes (E40H, E44H, E40H/E44H, D186H and D186N) of recombinant...
متن کاملMolecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia.
The basidiomycete isolate b19, originally identified by morphological characteristics of the fruiting body as Nematoloma frowardii, efficiently produces manganese peroxidase (MNP) and is used for degradation of natural, persistent aromatic polymers (lignin, humic acids and brown coal components). The N. frowardii MNP has shown good activity in conversion of xenobiotic compounds such as polycycl...
متن کاملInteractions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes
Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing tree trunks often occupied by other Basidiomycota species. We mimicked these species-species interactions by introducing F. pinicola to five white rot species, all common saprotrophs of Norway spruce. Hyphal interac...
متن کاملExpression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60
BACKGROUND The white-rot fungus Phlebia sp. strain MG-60 was proposed as a candidate for integrated fungal fermentation process (IFFP), which unifies aerobic delignification and semi-aerobic consolidated biological processing by a single microorganism based on its ability to efficiently degrade lignin and ferment the sugars from cellulose. To improve IFFP, the development of a molecular breedin...
متن کاملA mild thermomechanical process for the enzymatic conversion of radiata pine into fermentable sugars and lignin
BACKGROUND Conversion of softwoods into sustainable fuels and chemicals is important for parts of the world where softwoods are the dominant forest species. While they have high theoretical sugar yields, softwoods are amongst the most recalcitrant feedstocks for enzymatic processes, typically requiring both more severe pretreatment conditions and higher enzyme doses than needed for other lignoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 67 10 شماره
صفحات -
تاریخ انتشار 2001